Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription

Feng Zhang, Le Cong, Simona Lodato, Sriram Kosuri, George M Church & Paola Arlotta

Nature Biotechnol 2011

Luqman Hakim, Charles Winterhalter Manan Thaker, Jerome Salignon

December 10, 2012

- < □ > < Ξ >

Introduction

- Directing proteins to DNA efficiently and precisely for various biological manipulations is one of the goals of biological engineering
- Polydactyl zinc fingers and meganucleases have been engineered to enable sequence-specific DNA perturbation. However, they suffer from two drawbacks:
 - Lack of a simple correspondence between amino acid sequence and DNA recognition
 - 2 Difficult and expensive of its design and development
- TALEs are hence introduced as a direct and simpler alternative for DNA-targeting protein domains

What are TALEs?

Transcription Activator–Like Effectors (TALEs)

What are TALEs?

Transcription Activator-Like Effectors (TALEs)

0	1	2	3	4	5	6	7	8	9	10	11	12 1	12.5
т	HD	HD	NN	HD	HD	NG	HD	HD	HD	NG	HD	NG	HD
	C	C	G	C	C	T	C	C	C	T	C	T	C
т	NN	HD	<mark>NN</mark>	<mark>NN</mark>	HD	NG	HD	<mark>NN</mark>	HD	NG	<mark>NN</mark>	NG	<mark>NN</mark>
	G	C	G	G	C	T	C	G	C	T	G	T	G
т	NI	NI	NN	NI	NI	NG	NI	NI	NI	NG	NI	NG	NI
	A	A	G	A	A	T	A	A	A	T	A	T	A
т	NI	NG	NN	NI	NG	NG	NG	NI	NG	NG	NI	NG	NI
	A	T	G	A	T	T	T	A	T	T	A	T	A
т	NI	NN	NN	NI	<mark>NN</mark>	NG	NN	NI	NN	NG	NI	NG	NI
	A	G	G	A	G	T	G	A	G	T	A	T	A

- Strong correlation between amino acids at positions 12 and 13 and the corresponding bases in the TALE-binding site
- Potentially designable protein with sequence-specific DNA-binding capabilities

Methods

How can we construct designer TALEs effectively?

- < □ > < Ē >

Possible TALEs constructions

Old methods:

- PCR gene assembly & series ligations
- commercial services

Not high-throughput & cost-prohibitive

- < □ > < 글 >

Construction overview

Construction details

< □ ▶ < Ē ▶

Fluorescence-based reporter strategy

Sequence adjustments

Results

In vitro & in vivo validations

- < □ > < Ē >

TALEs in mammalian cells

Expression only successful on cotransfection with both TALE and Reporter Plasmid

- TALEs facilitated the binding of the transcription factors
- Thus initiate the expression of the genes

- < □ > < Ē >

TALEs binding affinity

- Binding affinity not affected by GC content
- What affects the binding affinity?

mSSB 2012/13

TALEs applied to iPSCs

Reporter mCherry overexpression

Endogeneous genes overexpression

• Failure for Oct4?

- Side effects
- Failures for Oct4 and cMyc

TALEs applied to iPSCs

Reporter mCherry overexpression

Endogeneous genes overexpression

• Failure for Oct4?

- Side effects
- Failures for Oct4 and cMyc

Epigenetic states

TALEs applied to iPSCs

Reporter mCherry overexpression

Endogeneous genes overexpression

• Failure for Oct4?

- Side effects
- Failures for Oct4 and cMyc

Epigenetic states

 \Rightarrow Combination with Chromatin-remodeling agents?

Sere 🛦

Conclusions & Expectations

Key points of the article:

- Economical and more efficient way to construct customized TALEs
- Successful TALEs usage for overexpressing genes

Challenges and future works:

- Assessing the bias
 - Side effects
 - Off target effects
 - Affinity to methylated DNA
- DNA TAI Es interaction characterization
- Toxicity studies

Genome editing

TALEs expected applications

- TF
- Nucleases (TALENs)
- Recombinases
- Epigenetic-modifying enzymes

Genome editing

TALEs expected applications

- TF
- Nucleases (TALENs)
- Recombinases
- Epigenetic-modifying enzymes

	Device					
Criteria	TALENs	Zinc Finger	Meganucleases			
Specificity	?	+	++			
Toxicity	?	+	+			
Activity	+	+	+			
Size	-	+	-			
Design/method	+	-	-			

Genome editing

TALEs expected applications

- TF
- Nucleases (TALENs)
- Recombinases
- Epigenetic-modifying enzymes

	Device					
Criteria	TALENs	Zinc Finger	Meganucleases			
Specificity	?	+	++			
Toxicity	?	+	+			
Activity	+	+	+			
Size	-	+	-			
Design/method	+	-	-			

nature methods

Techniques for life scientists and chemists

Method of the Year 2011

The ability to introduce targeted, tailored changes into the genomes of several species will make it feasible to ask more precise biological questions.

