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Caulobacter crescentus is a model organism for the integrated circuitry that runs a bacterial cell
cycle. Full discovery of its essential genome, including non-coding, regulatory and coding elements,
is a prerequisite for understanding the complete regulatory network of a bacterial cell. Using hyper-
saturated transposon mutagenesis coupled with high-throughput sequencing, we determined the
essential Caulobacter genome at 8 bp resolution, including 1012 essential genome features:
480 ORFs, 402 regulatory sequences and 130 non-coding elements, including 90 intergenic
segments of unknown function. The essential transcriptional circuitry for growth on rich media
includes 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor.
We identified all essential promoter elements for the cell cycle-regulated genes. The essential
elements are preferentially positioned near the origin and terminus of the chromosome. The high-
resolution strategy used here is applicable to high-throughput, full genome essentiality studies and
large-scale genetic perturbation experiments in a broad class of bacterial species.
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Introduction

In addition to protein-coding sequences, the essential genome
of any organism contains essential structural elements, non-
coding RNAs and regulatory sequences. We have identified the
Caulobacter crescentus essential genome to 8 bp resolution
by performing ultrahigh-resolution transposon mutagenesis
followed by high-throughput DNA sequencing to determine
the transposon insertion sites. A notable feature of C.
crescentus is that the regulatory events that control polar
differentiation and cell-cycle progression are highly integrated,
and they occur in a temporally restricted order (McAdams and
Shapiro, 2011). Many components of the core regulatory circuit
have been identified and simulation of the circuitry has been
reported (Shen et al, 2008). The identification of all essential
DNA elements is essential for a complete understanding of the
regulatory networks that run a bacterial cell.

Essential protein-coding sequences have been reported for
several bacterial species using relatively low-throughput
transposon mutagenesis (Hutchison et al, 1999; Jacobs et al,
2003; Glass et al, 2006) and in-frame deletion libraries
(Kobayashi et al, 2003; Baba et al, 2006). Two recent studies
used high-throughput transposon mutagenesis for fitness and
genetic interaction analysis (Langridge et al, 2009; van
Opijnen et al, 2009). Here, we have reliably identified all
essential coding and non-coding chromosomal elements,
using a hyper-saturated transposon mutagenesis strategy that
is scalable and can be extended to obtain rapid and highly

accurate identification of the entire essential genome of any
bacterial species at a resolution of a few base pairs.

Results and discussion

We engineered a Tn5 derivative transposon (Tn5Pxyl) that
carries at one end an inducible outward pointing Pxyl
promoter (Christen et al, 2010; Supplementary Figure 1A;
Materials and methods). Thus, the Tn5Pxyl element can
activate or disrupt transcription at any site of integration,
depending on the insertion orientation. About 8�105 viable
Tn5Pxyl transposon insertion mutants capable of colony
formation on rich media (PYE) plates were pooled. Next,
DNA from hundred of thousands of transposon insertion sites
reading outwards into flanking genomic regions was parallel
PCR amplified and sequenced by Illumina paired-end sequen-
cing (Figure 1; Supplementary Figure 1B; Materials and
methods). A single sequencing run yielded 118 million
raw sequencing reads. Of these, 490 million (480%) read
outward from the transposon element into adjacent genomic
DNA regions (Supplementary Figure 1C) and were subse-
quently mapped to the 4-Mbp genome, allowing us to
determine the location and orientation of 428 735 independent
transposon insertions with base-pair accuracy (Figure 2A;
Materials and methods).

Eighty percent of the genome sequence showed an ultrahigh
density of transposon hits; an average of one insertion event
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every 7.65 bp. The largest gap detectable between consecutive
insertions was o50 bp (Supplementary Figure 2). Within the
remaining 20% of the genome, chromosomal regions of up to
6 kb in length tolerated no transposon insertions.

Essential non-coding sequences

Within non-coding sequences of the Caulobacter genome, we
detected 130 small non-disruptable DNA segments between
90 and 393 bp long (Materials and methods; Supplementary
Data-DT1). (Tables in the Excel file of Supplementary Data are
designated DT1, DT2 and so on.) Owing to the uniform
distribution of transposition across the genome (Materials and
methods), such non-disruptable DNA regions are highly
unlikely (Supplementary Figure 2). Among 27 previously
identified and validated sRNAs (Landt et al, 2008), three
(annotated as R0014, R0018 and R0074 in Landt et al, 2008)
were contained within non-disruptable DNA segments while
another three (R0005, R0019 and R0025) were partially
disruptable. Figure 2B shows one of the three (Supplementary
Data-DT1) non-disruptable sRNA elements, R0014, that is
upregulated upon entry into stationary phase (Landt et al,
2008). Two additional small RNAs found to be essential are the
transfer-messenger RNA (tmRNA) and the ribozyme RNAseP
(Landt et al, 2008). In addition to the 8 non-disruptable sRNAs,
29 out of the 130 essential non-coding sequences contained
non-redundant tRNA genes (Figure 2C); duplicated tRNA
genes were found to be non-essential. We identified two
non-disruptable DNA segments within the chromosomal
origin of replication (Figure 2D). A 173-bp long essential
region contains three binding sites for the replication repressor
CtrA, as well as additional sequences that are essential for
chromosome replication and initiation control (Marczynski
et al, 1995). A second 125 bp long essential DNA segment
contains a binding motif for the replication initiator protein
DnaA. Surprisingly, between these non-disruptable origin
segments there were multiple transposon hits suggesting that
the Caulobacter origin is modular with possible DNA looping
compensating for large insertion sequences. Thus, we resolved
essential non-coding RNAs, tRNAs and essential replication

elements within the origin region of the chromosome.
Although 90 additional non-disruptable small genome
elements were identified (Supplementary Data-DT1), they
cannot be explained within the context of the current genome
annotation. Eighteen of these are conserved in at least one
closely related species. Only two could encode a protein
of over 50 amino acids.

Essential protein-coding sequences

For each of the 3876 annotated open reading frames (ORFs),
we analyzed the distribution, orientation and genetic context
of transposon insertions. We identified the boundaries of the
essential protein-coding sequences and calculated a statisti-
cally robust metric for ORF essentiality (Materials and
methods; Supplementary Data-DT2). There are 480 essential
ORFs and 3240 non-essential ORFs. In addition, there were
156 ORFs that severely impacted fitness when mutated,
as evidenced by a low number of disruptive transposon
insertions (Supplementary methods). Figure 2E shows the
distribution of transposon hits for a subregion of the genome
encoding essential and non-essential ORFs. Genome-wide
transposon insertion frequencies for the annotated Caulobac-
ter ORFs are shown in Figure 2F. In all, 145/480 essential ORFs
lacked transposon insertions across the entire coding region,
suggesting that the full length of the encoded protein up to the
last amino acid is essential. The 8-bp resolution allowed a
dissection of the essential and non-essential regions of the
coding sequences. Sixty ORFs had transposon insertions
within a significant portion of their 30 region but lacked
insertions in the essential 50 coding region, allowing the
identification of non-essential protein segments. For example,
transposon insertions in the essential cell-cycle regulatory
gene divL, a tyrosine kinase, showed that the last 204
C-terminal amino acids did not impact viability (Figure 2G),
confirming previous reports that the C-terminal ATPase
domain of DivL is dispensable for viability (Reisinger et al,
2007; Iniesta et al, 2010). Our results show that the entire
C-terminal ATPase domain, as well as the majority of the
adjacent kinase domain, is non-essential while the N-terminal
region including the first 25 amino acids of the kinase domain
contain essential DivL functions.

Conversely, we found 30 essential ORFs that tolerated
disruptive transposon insertions within the 50 region while
no insertion events were tolerated further downstream
(Supplementary Table 1). One such example, the essential
histidine phosphotransferase gene chpT (Biondi et al, 2006),
had 12 transposon insertions near the beginning of the
annotated ORF (Figure 2H). These transposon insertions
would prevent the production of a functional protein and
should not be detectable within chpT or any essential ORF
unless the translational start site is mis-annotated. Using LacZ-
reporter assays (Supplementary methods), we found that the
promoter element as well as the translational start site of chpT
was located downstream of the annotated start codon
(Figure 2H). Cumulatively, 46% of all essential ORFs
(30 out of 480) appear to be shorter than the annotated
ORF (Supplementary Table 1), suggesting that these are
probably mis-annotated, as well. Thus, 145 ORFs showed
all regions were essential, 60 ORFs showed non-essential
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Figure 1 Genomic high-resolution transposon scanning strategy. Insertion
mutants are pooled to generate a hyper-saturated Tn5 mutant library.
Subsequent parallel amplification of individual transposon junctions by a nested
arbitrary PCR yields DNA fragments reading out of transposon elements into
adjacent genomic DNA sequences. DNA fragments carry terminal adapters
(orange, blue) compatible to the Illumina flow-cell and are sequenced in parallel
by standard paired-end sequencing.
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C-termini and the start of 30 ORFs were mis-annotated. The
remaining 245 ORFs tolerated occasional insertions within a
few amino acids of the ORF boundaries (Supplementary Figure
3; Materials and methods).

The majority of the essential ORFs have annotated
functions. They participate in diverse core cellular processes
such as ribosome biogenesis, energy conversion, metabolism,
cell division and cell-cycle control. Forty-nine of the essential

proteins are of unknown function (Table I; Supplementary
Table 2). We attempted to delete 11 of the genes encoding
essential hypothetical proteins and recovered no in-frame
deletions, confirming that these proteins are indeed essential
(Supplementary Table 3).

Among the 480 essential ORFs, there were 10 essential
transcriptional regulatory proteins (Supplementary Table 4),
including the cell-cycle regulators ctrA, gcrA, ccrM, sciP and
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Figure 2 Identification of essential genome features. (A) 28 735 unique Tn5 insertions sites (red) were mapped onto the 4-Mbp Caulobacter genome that encodes
3876 annotated ORFs shown in the inner (minus strand) and middle (plus strand) tracks by black lines. (B) An 192-bp essential genome segment (no Tn5 insertions)
contains a stationary phase expressed non-coding sRNA (Landt et al, 2008). The rectangular heat map above shows the micro-array probe cross-correlation pattern of
the sRNA (Landt et al, 2008). The locations of transposon insertions (red marks) are shown above the genome track. P-values for essentiality for the different gap sizes
observed are below. (C) A small non-disruptable segment containing an essential tRNA. (D) Two non-disruptable genome regions include two regulatory sequences
required for chromosome replication. (E) Locations of mapped transposon insertion sites (red marks) on a segment of the Caulobacter genome. Non-essential ORFs
(blue) have dense Tn5 transposon insertions, while large non-disruptable genome regions contain essential ORFs (light red). For every non-disruptable genome region,
a P-value for gene essentiality is calculated assuming uniform distributed Tn5 insertion frequency and neutral fitness costs. (F) For each of the 3876 Caulobacter ORFs,
the number of Tn5 insertions is plotted against the corresponding ORF length. Non-essential ORFs (blue), fitness relevant ORFs (Supplementary information) (green)
and essential ORFs (red) have different transposon insertion frequencies. (G) The essential cell-cycle gene divL had multiple transposon insertions within the 30 tail. This
dispensable region encodes parts of the histidine kinase domain as well as an ATPase domain that is non-essential. (H) One of the ORFs with mis-annotated start site.
The essential cell-cycle gene chpT tolerates disruptive Tn5 insertions in the 50 region of the mis-annotated ORF. The native promoter element and TSS are located
downstream of the mis-annotated start codon as confirmed by lacZ promoter activity assays.
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dnaA (McAdams and Shapiro, 2003; Holtzendorff et al, 2004;
Collier and Shapiro, 2007; Gora et al, 2010; Tan et al, 2010), plus
5 uncharacterized putative transcription factors. We surmise
that these five uncharacterized transcription factors either
comprise transcriptional activators of essential genes or
repressed genes that would move the cell out of its replicative
state. In addition, two RNA polymerase sigma factors RpoH
and RpoD, as well as the anti-sigma factor ChrR, which
mitigates rpoE-dependent stress response under physiological
growth conditions (Lourenco and Gomes, 2009), were also
found to be essential. Thus, a set of 10 transcription factors,
2 RNA polymerase sigma factors and 1 anti-sigma factor
comprise the essential core transcriptional regulators for
growth on rich media.

Essential promoter elements

To characterize the core components of the Caulobacter cell-
cycle control network, we identified essential regulatory
sequences and operon transcripts (Supplementary Data-DT3
and DT4). Figure 3A illustrates the transposon scanning
strategy used to locate essential promoter sequences. The
promoter regions of 210 essential genes were fully contained
within the upstream intergenic sequences, and promoter
regions of 101 essential genes extended upstream into flanking
ORFs (Table I). We also identified 206 essential genes that are
co-transcribed with the corresponding flanking gene(s) and
experimentally mapped 91 essential operon transcripts
(Table I; Supplementary Data-DT4). One example of an

essential operon is the transcript encoding ATPase synthase
components (Figure 3B). Altogether, the 480 essential protein-
coding and 37 essential RNA-coding Caulobacter genes are
organized into operons such that 402 individual promoter
regions are sufficient to regulate their expression (Table I).
Of these 402 essential promoters, the transcription start sites
(TSSs) of 105 were previously identified (McGrath et al, 2007).

We found that 79/105 essential promoter regions extended
on average 53 bp upstream beyond previously identified TSS
(Figure 3C; McGrath et al, 2007). These essential control
elements accommodate binding sites for transcription factors
and RNA polymerase sigma factors (Supplementary Table 5).
Of the 402 essential promoter regions, 26 mapped downstream
of the predicted TSS. To determine if these contained an
additional TSS, we fused the newly identified promoter regions
with lacZ and found that 24 contained an additional TSS
(Supplementary Table 6). Therefore, 24 genes contain at least 2
TSS and only the downstream site was found to be essential
during growth on rich media. The upstream TSS may be
required under alternative growth conditions.

Cell cycle-regulated essential genes

Of the essential ORFs, 84 have a cell cycle-dependent
transcription pattern (McGrath et al, 2007; Supplementary
Data-DT5). The cell cycle-regulated essential genes had
statistically significant longer promoter regions compared
with non-cell cycle-regulated genes (median length 87 versus
41 bp, Mann–Whitney test, P-value 0.0018). The genes with
longer promoter regions generally have more complex
transcriptional control. Among these are key genes that are
critical for the commitment to energy requirements and
regulatory controls for cell-cycle progression. For example,
the cell-cycle master regulators ctrA, dnaA and gcrA (Collier
et al, 2006) ranked among the genes with the longest essential
promoter regions (Figure 3D and E; Supplementary Data-DT5).
Other essential cell cycle-regulated genes with exceptionally
long essential promoters included ribosomal genes, gyrB
encoding DNA gyrase and the ftsZ cell-division gene
(Figure 3E). The essential promoter region of ctrA extended
171 bp upstream of the start codon (Figure 3F) and included
two previously characterized promoters that control its
transcription by both positive and negative feedback regula-
tion (Domian et al, 1999; Tan et al, 2010). Only one of the two
upstream SciP binding sites in the ctrA promoter (Tan et al,
2010) was contained within the essential promoter region
(Figure 3F), suggesting that the regulatory function of the
second SciP binding site upstream is non-essential for growth
on rich media.

Altogether, the essential Caulobacter genome contains at
least 492 941 bp. Essential protein-coding sequences comprise
90% of the essential genome. The remaining 10% consists
of essential non-coding RNA sequences, gene regulatory
elements and essential genome replication features (Table I).
Essential genome features are non-uniformly distributed along
the Caulobacter genome and enriched near the origin and the
terminus regions, indicating that there are constraints on the
chromosomal positioning of essential elements (Figure 4A).
The chromosomal positions of the published E. coli essential

Table I The essential Caulobacter genome

Quantity Size
(bp)

Fraction of
genome

(%)a

Essential non-coding elements 130 14 991 0.37
Non-coding elements, unknown
function

91 10 893 0.27

tRNAs 29 2312 0.06
Small non-coding RNAs 8 1488 0.04
Genome replication elements in
the Cori

2 298 0.01

Essential ORFs 480 444 417 11.00
Metabolism 176 160 011 3.96
Ribosome function 95 76 420 1.89
Cell wall & membrane biogenesis 54 63 393 1.57
Proteins of unknown function 49 30 469 0.75
Cell cycle, division and DNA
replication

43 52 322 1.29

Other cellular processes 39 36 017 0.89
Transcription 15 16 417 0.41
Signal transduction 9 9368 0.23

Essential promoter regions 402 33 533 0.83
Contained within intergenic
sequences

210 13150 0.33

Extending into upstream ORFs 101 11 428 0.28
Driving operons 91 8955 0.22

Essential Caulobacter genome 492 941 12.19

The identified essential non-coding, protein-coding and regulatory genome
features are shown.
aFraction of the entire Caulobacter genome encoding essential elements.
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coding sequences are preferentially located at either side of the
origin (Figure 4A; Rocha, 2004).

The question of what genes constitute the minimum set
required for prokaryotic life has been generally estimated by
comparative essentiality analysis (Carbone, 2006) and for a
few species experimentally via large-scale gene perturbation
studies (Akerley et al, 1998; Hutchison et al, 1999; Kobayashi
et al, 2003; Salama et al, 2004). Of the 480 essential
Caulobacter ORFs, 38% are absent in most species outside
the a-proteobacteria and 10% are unique to Caulobacter
(Figure 4B). Interestingly, among 320 essential Caulobacter
proteins that are conserved in E. coli, more than one third are
non-essential (Figure 4C). The variations in essential gene
complements relate to differences in bacterial physiology and
life style. For example, ATP synthase components are essential

for Caulobacter, but not for E. coli, since Caulobacter cannot
produce ATP through fermentation. Thus, the essentiality of a
gene is also defined by non-local properties that not only
depend on its own function but also on the functions of all
other essential elements in the genome. The strategy described
here provides a direct experimental approach that, because of
its simplicity and general applicability, can be used to quickly
determine the essential genome for a large class of bacterial
species.

Materials and methods
Supplementary information includes descriptions of (i) transposon
construction and mutagenesis, (ii) DNA library preparation and
sequencing, (iii) sequence processing, (iv) essentiality analysis and
(v) statistical data analysis.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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