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The Mycobacterium tuberculosis
regulatory network and hypoxia
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Antonio Gomes3*, Tige Rustad5, Gregory Dolganov7, Irina Glotova3, Thomas Abeel4,8, Chris Mahwinney1, Adam D. Kennedy9,
René Allard10, William Brabant5, Andrew Krueger1, Suma Jaini1, Brent Honda1, Wen-Han Yu1, Mark J. Hickey5, Jeremy Zucker4,
Christopher Garay1, Brian Weiner4, Peter Sisk4, Christian Stolte4, Jessica K. Winkler5, Yves Van de Peer8, Paul Iazzetti1,
Diogo Camacho1, Jonathan Dreyfuss1, Yang Liu7, Anca Dorhoi11, Hans-Joachim Mollenkopf12, Paul Drogaris10, Julie Lamontagne10,
Yiyong Zhou10, Julie Piquenot10, Sang Tae Park2, Sahadevan Raman2, Stefan H. E. Kaufmann11, Robert P. Mohney9,
Daniel Chelsky10, D. Branch Moody6, David R. Sherman5,13 & Gary K. Schoolnik7,14

We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network
based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites
and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis
pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed
a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between
the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in
response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and
metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these
changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.

Mycobacterium tuberculosis (MTB) has been associated with human
disease for thousands of years and its success is due in part to the
ability to survive within the host for months to decades in an asymp-
tomatic state. The mechanisms underlying this persistence in the host
are poorly understood, although adaptations to hypoxia are thought
to have a prominent role1,2. Hypoxia produces widespread changes in
the bacterium and induces a non-replicating state characterized by
phenotypic drug tolerance. Within the host, MTB also shifts to lipids,
including cholesterol, as a primary nutrient3–6. Lipid catabolism is, in
turn, linked to the biosynthesis of lipids that serve as energy stores,
factors associated with virulence and immunomodulation, and com-
ponents of the unique and complex cell wall of MTB7–9.

The regulatory mechanisms underlying these and other adaptations
are largely unknown, as functions for only a small fraction of the 1801
MTB transcription factors (TFs) are known, direct DNA binding data
exist for only a handful of sites, and the interactions between TFs nece-
ssary for complex behaviour have not been studied. We also lack a compre-
hensive understanding of the cellular changes underlying pathogenesis,
with existing studies typically focused on specific molecular compo-
nents that can be difficult to integrate with results from other studies.
To address these challenges, we have performed a systems analysis of
the MTB regulatory and metabolic networks, with an emphasis on hyp-
oxic conditions thought to contribute to MTB persistence in the host.

Mapping and functional validation of TF binding sites
To systematically map TF binding sites, we performed chromatin
immunoprecipitation followed by sequencing (ChIP-Seq)10–12 using

Flag-tagged transcription factors episomally expressed under control
of a mycobacterial tetracycline-inducible promoter13–15 (Supplemen-
tary Fig. 1). The inducible promoter system allows us to study all MTB
TFs in a standard and reproducible reference state without a priori
knowledge of the conditions that normally induce their expression.
Using a custom pipeline (Supplementary Fig. 2 and Supplementary
Table 1) we identified binding sites in regions of enrichment with high
spatial resolution. Using this method, we mapped 50 TFs. We com-
pared the results with previous reports for two well-studied regulators
for which strong evidence for direct binding exists: the activator DosR
(Rv3133c) and the repressor KstR (Rv3574).

Our method shows high sensitivity and reproducibility. We identi-
fied all known direct binding regions for DosR (Supplementary Fig. 3)
and KstR (Fig. 1a) and recovered the known motifs for these fac-
tors (Supplementary Material). Coverage for enriched sites is highly
correlated between replicates (Fig. 1b and Supplementary Fig. 4).
There is also high reproducibility in binding location, with distances
between replicate binding sites less than the length of predicted bind-
ing site motifs for the vast majority of sites (Fig. 1b). Moreover, for 11
different TFs we also see substantial concordance between binding
observed in normoxia and binding observed in hypoxia (Supplemen-
tary Fig. 5).

ChIP enrichment is a function of the number of cells in which a site
is bound16 which in turn is governed by the affinity of the site and the
concentration of the factor. Thus, increasing TF induction was pre-
dicted to increase the occupancy of strong sites up to a saturation limit
while occupying weaker affinity sites. This is confirmed by comparing
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ChIP-Seq experiments after inducing three different factors to differ-
ent expression abundances (Fig. 1c, Supplementary Fig. 6 and Sup-
plementary Fig. 7).

Consistent with this observation, at the highest levels of TF induc-
tion we identify more binding sites than previously reported for DosR
and KstR (Fig. 1a); most, but not all, of these newly-identified sites
have lower ChIP-Seq coverage than the majority of previously iden-
tified sites. Abundant binding of transcription factors, particularly to
low affinity sites, has been reported in yeast, worm, fly and mamma-
lian cells16–18 but, to our knowledge, these data represent the first large-
scale observation in a prokaryote. We have confirmed that many novel
sites can be bound at physiological levels of these TFs, and that sites
show sequence specificity for each TF. In addition, for DosR, nearly all
novel sites are also found when performing ChIP using anti-DosR anti-
bodies in a wild-type background (Supplementary Material Section 2.4).

To assess the degree to which binding is associated with transcrip-
tional regulation, we performed transcriptomic analysis from the same
cultures in which regulators were induced for ChIP-Seq. Using these
data we developed a procedure for determining the possible regulatory
roles of identified binding sites (Supplementary Fig. 11). This method
identified a regulatory effect for 92% and 80% of previously identified
DosR and KstR sites, respectively, and associated regulation with 43%
and 36% of new DosR and KstR binding sites revealed using ChIP-Seq
(false discovery rate (FDR) 5 0.15). Many, but not all, newly identified
sites show weaker ChIP-Seq enrichment, indicating evidence for reg-
ulatory effects of weak binding even for well-studied regulators19–21.
This was corroborated by knockout expression data for these TFs
(Supplementary Fig. 12).

Applying our method to all peaks from all 50 TFs, we could assign a
potential regulatory role to 25% of peaks within 1,000 base pairs (bp)

on either side of the site (FDR 5 0.15; 18% of sites were significant
with q value 5 0) (Fig. 1e). Stronger binding sites are more often asso-
ciated with regulation than weaker sites, independent of window size,
suggesting a possible correlation between binding strength and regu-
latory impact (Supplementary Fig. 13). Such a correlation could explain
why the stronger sites have been reported, as they would be more easily
detected. The use of a 1-kilobase (kb) window ensures that predictions
are not a priori biased to proximal promoter regions. However, even
with 4-kb windows, the distance between binding sites and associated
target genes is consistent with expectation: binding sites are typically
located within 500 bp of the start codon of the predicted regulated
gene (Fig. 1f), with 24% located in the upstream intergenic region. By
contrast, 76% of sites fall into annotated coding regions and a significant
proportion are associated with regulation. Extensive genic binding has
been reported17,18 and there remains no consensus on its functional
significance. Prokaryotic binding sites have been largely mapped with
lower resolution ChIP-Chip that frequently show broad binding over-
lapping both genic and intergenic regions22. Our method detects bind-
ing at high spatial resolution and indicates that some genic binding may
reflect the extension of promoter regions into upstream genes, alterna-
tive promoter regions within genes, or errors in the current annotation
of genic regions. As with previous reports17, we cannot assign regulatory
roles to all detected binding sites (Supplementary Fig. 13). We discuss
potential issues with false positives and negatives in Supplementary
Material.

We also tested the degree to which observed binding could be
used to develop models predictive of gene expression. We developed
computational models relating the expression of target genes to the
expression of TFs predicted to bind the target (Supplementary Fig. 14).
The relationship between TFs and target genes was parameterized
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Figure 1 | ChIP-Seq binding shows high sensitivity, reproducibility and
sequence specificity. a, We identify all known binding sites (red bars) for KstR
and DosR (Supplementary Fig. 3). Binding site heights plotted as bars and
ordered by peak height. b, Binding site identification is highly reproducible. Bar
plot shows the distance between corresponding sites in two KstR replicates. The
majority of replicates fall within the motif (cyan line). Inset shows correlation of
heights of corresponding peaks in two replicates (R2 . 0.83 for all TFs).
c, Increasing TF expression increases peak height. Shown are plots of peaks

identified at different levels of KstR induction. Corresponding peaks are plotted
at the same position on the horizontal axis. d, KstR binding peak height
correlated with motif structure. The canonical palindromic motif is identified
in all strong binding sites. At weaker sites, however, we detect degraded motifs.
e, Fraction of peaks assigned regulation as a function of relative peak height.
f, Stacked histogram of the number of peaks assigned regulation as a function of
the distance to the start codon of the predicted target gene and coloured by
genomic location relative to the target gene and genic or intergenic context.
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based on subsets of the overexpression data and tested on the remain-
ing using cross-validation. We could generate models that predict
more accurately than random TF assignments for 28% of genes with
binding (positive false discovery rate (pFDR) , 0.15; Supplementary
Table 4). More importantly, as described below, we confirmed the
ability of these models to predict expression for genes in an indepen-
dent data set.

An MTB regulatory network model
Using the combination of binding site mapping and functional valida-
tion via expression profiling, we analysed the regulatory interactions
of 50 TFs (26% of predicted MTB TFs). Our TF selection was weighted
towards those that respond to hypoxia or are associated with lipid
metabolism. By linking TFs with genes based on binding proximity
(Supplementary Text) and potential regulation, we constructed the
regulatory network model shown in Supplementary Fig. 15 (also Sup-
plementary Fig. 16). The TB regulatory network model has topologi-
cal features seen for other organisms (Supplementary Text), including
the presence of ‘hubs’ or TFs that interact with many genes. Surpri-
singly, Rv0081 forms the largest hub identified among the TFs reported,
and interacts with another hub, Lsr2, an MTB analogue of the H-NS
nucleoid binding protein23,24 (Supplementary Text).

The network also begins to reveal interactions between transcrip-
tion factors mediating responses of MTB to its environment (Sup-
plementary Material). Of particular interest is a subnetwork involving
responses to altered oxygen status and lipid availability (Fig. 2). These
responses, among the most extensively studied in MTB, have been
viewed largely as separate phenomena. DosR and Rv0081 mediate the
initial response to hypoxia, whereas a larger stimulon termed the endu-
ring hypoxic response (EHR) is induced later in hypoxia25. KstR con-
trols a large regulon mediating cholesterol degradation and lipid and
energy metabolism26,27. KstR was identified as part of the EHR, but the
biology linking these responses was unclear.

We identified two potential regulators for KstR. Rv0081 is predic-
ted to repress both Rv0324 and KstR, whereas Rv0324 is predicted to
activate KstR. Rv0081 is the only regulator in the initial hypoxic res-
ponse apart from DosR, and our network identifies an interaction
underlying the known induction of Rv0081 by DosR. Rv0324 is a
regulator associated with the EHR25.

We also identify several potential regulators of DosR: Rv2034,
Rv0767c and PhoP (Rv0757). Rv2034 is an EHR regulator predicted
to activate DosR, thus providing possible positive feedback from the
enduring to the initial hypoxic response (during revision, this link
between Rv2034 and DosR was confirmed28). PhoP mediates a range
of responses, including upregulating DosR29–31, although direct regu-
lation of DosR by PhoP had not been previously demonstrated. PhoP
binding to DosR is the strongest among 50 TFs, providing a mecha-
nism for this regulatory link and supporting the conclusion that regu-
lation of hypoxia adaptation by PhoP is indirect through this connection
with DosR29. PhoP also mediates pH adaptation and our data confirm
direct binding between PhoP and the aprABC locus required for this32.
PhoP is known to modulate the production of virulence lipids and we
predict PhoP to bind upstream of and directly regulate WhiB3 (Rv3416),
which codes for a redox-sensitive protein that directly regulates the
production of these lipids33. In addition to PhoP, both Rv0081 and Lsr2
also display binding to whiB3, with activation predicted by Rv0081.
Taken together, the data reveal an interconnected subnetwork linking
hypoxic adaptation, lipid and cholesterol degradation, and lipid bio-
synthesis (Supplementary Text).

Profiling and prediction during hypoxia and re-aeration
To broadly assess the changes associated with altered O2 availability,
and assess the explanatory power of the regulatory network in these
responses, we performed systems level lipidomic, proteomic, meta-
bolomic and transcriptomics profiling of MTB during a time course
of hypoxia and subsequent re-aeration (Supplementary Fig. 17 and

Methods). We cultured MTB in a medium without detergent or exo-
genous lipids. All measurements were normalized to baseline levels
before hypoxia, and integrated with a manually curated model of MTB
metabolism (Supplementary Fig. 18). We summarize key results here
and provide additional details and results in Supplementary Text.

Changes in oxygen availability result in expression changes to nearly
one-third of all MTB genes (Supplementary Fig. 19A). To identify
temporal trends and associate them with possible regulators, we clus-
tered expression data into paths using DREM34 (Supplementary Text).
We identified Rv0081 as a candidate high-level regulator broadly pre-
dictive of the overall expression of sets of genes during hypoxia and re-
aeration (Supplementary Fig. 19b). A broad regulatory role for Rv0081
is thus supported by three independent sources of evidence: Rv0081
overexpression in normoxia alters the expression of numerous genes,
Rv0081 ChIP-Seq reveals a large number of binding sites which are
also detected during hypoxia (Supplementary Fig. 20), and the expres-
sion and predicted regulatory role of Rv0081 correlates with the expres-
sion of the genes it binds during hypoxia.

We next sought to assess the degree to which the regulatory net-
work could be used to predict changes in the expression of individual
genes during hypoxia and re-aeration. We used the regression models
described above—parameterized by independent ChIP-Seq and TF
overexpression transcriptomics data (Supplementary Material)—and
generated predictions that are significantly better than random for 66%
of genes with significant changes. Examples are shown in Fig. 3 and
Supplementary Fig. 21. In particular, we correctly predict the pattern of
expression of KstR, confirming an implication of the network topology.
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Figure 2 | TF regulatory interaction subnetwork linking hypoxia, lipid
metabolism and protein degradation. The figure shows a subset of the
regulatory network model for selected transcription factors. Edges are coloured
by z-score (see text) with red edges indicating positive z-scores and activation,
and blue indicating negative z-scores and repression. Grey edges indicate links
without significant z-scores, TFs without induction expression data, or
autobinding. The width of edges indicates the height of the corresponding
binding site relative to the maximum binding site for the corresponding TF.
Selected TFs are colour-coded by functional association and heat maps show
expression data during hypoxia and re-aeration as shown in legend.
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Importantly, these data also indicate that the regulatory network, built
from a normoxic baseline, can generalize to hypoxia.

Alterations in lipid metabolism
Consistent with predictions of the regulatory network during hypoxia,
we found strong induction of genes associated with lipid catabolism and
cholesterol degradation, including the regulator kstR (Fig. 3, Supplemen-
tary Fig. 18 and Supplementary Fig. 22). KstR induction by hypoxia is
predicted by the core regulatory network. However, kstR is a repressor26

and kstR-repressed cholesterol degradation genes are among those indu-
ced. KstR de-repression occurs during growth on cholesterol27. However,
no cholesterol or other exogenous lipids are present in our medium.
Follow-up studies suggest that de-repression of kstR may be due to fatty
acids endogenous to MTB or their metabolites (Supplementary Text).

The accumulation of triacylglycerides (TAGs) during hypoxia and
in TB patient sputum samples, and their utilization upon re-aeration,
has been reported7,8,35. We also observe TAG accumulation during hyp-
oxia and rapid depletion during re-aeration (Fig. 4). A detailed systems
view associated with these changes (Supplementary Text) suggests a
scenario in which metabolites upstream of DAG decrease in produc-
tion, and TAG accumulation results from conversion of existing DAGs
to TAGs via triacylglyceride synthase. We also observe changes poten-
tially related to TAG utilization. The regulatory network identifies
several regulatory links potentially relevant to these changes (Supplemen-
tary Fig. 18). Induction of tgs1 by DosR is well established7,36,37, and we
identify this link. The network also identifies oxygen-responsive reg-
ulators of tgs2 (Rv0081, Rv0324) and tgs4 (DosR, Rv0324) and our
models predict positive regulation of these genes in hypoxia by these
TFs (Fig. 3). Further, three of four lipase genes (Rv3176, Rv1169c and
Rv3097c) induced during hypoxia are influenced by regulators in the
core network, and in these three cases we are able to predict their
expression profiles using our gene expression models (Fig. 3).

MTB uses methylmalonyl-CoA as a precursor to synthesize a com-
plex set of surface-exposed methyl-branched lipids including acylated
trehaloses (PAT/DAT), sulphoglycolipids (SGL) and phthiocerol dimy-
cocerosates (PDIM), the latter two associated with virulence in murine
models38–42. During hypoxia, the expression of biosynthetic genes for
SGL, PAT/DAT, PDIMs and methylmalonyl are generally downregu-
lated (Supplementary Fig. 18). Correspondingly, during hypoxia mass

spectral signals corresponding to diacylated sulphoglycolipid (AC2SGL)
(a precursor to SL-1, the major SGL in MTB) and DATs seemed unal-
tered, whereas ions corresponding to PDIMs showed a modest decline
(Fig. 4, DATs not shown). Conversely, during re-aeration, we obser-
ved induction of genes encoding enzymes in the methylmalonyl path-
way. The activation of the methylcitrate cycle and accumulation of
methylcitrate suggests the availability of precursors for methylmalo-
nate. Consistent with this hypothesis, we see statistically significant
increases in AC2SGL (Fig. 4).

The regulation of the methylmalonyl pathway is partially explained
by the regulatory network. All three subunits of the propionyl-CoA
carboxylase (PCC) complex (AccA3, AccD5 and AccE5) are regula-
ted by hypoxia regulators (Fig. 3). Both MutA and MutB also display
regulation by KstR and Lsr2. Regulation associated with methyl-
branched lipid biosynthesis, in contrast, is complex. Whib3 is regu-
lated by PhoP in the model, and both are known to modulate the
production of PAT/DAT (via pks3) and SL (via pks2)29,33. Our net-
work predicts a PhoP/WhiB3 FFL underlying this phenomenon, with
PhoP regulating whiB3 and both regulating pks2/pks3 (Supplemen-
tary Fig. 25). Similar regulatory complexity is seen for DIM, although
regulation of key steps in DIM synthesis by Rv0081, PhoP, DosR and
KstR is predicted.

Mycolyl glycolipids are important immunomodulatory components
of the mycobacterial cell wall. As seen in other systems43–45, we observe
increases in free mycolic acids during hypoxia that are reversed during
re-aeration (Fig. 4). Conversely, we observe the opposite effects on
trehalose monomycolates (TMMs) (Fig. 4) and trehalose dimycolates
(TDMs) (not shown). Similar effects have recently been reported for
TDMs in Mycobacterium smegmatis during biofilm formation45 and
TMMs in MTB during the transition into a dormant ‘‘non-culturable’’
state induced by a potassium-free medium43.The rapid, reversible and
nearly complete mobilization of glycosylated to free mycolates during
hypoxic dormancy is also compatible with decreased need to deliver
mycolic acids to non-dividing cells.

Concluding remarks
This report presents an initial step in the reconstruction of the MTB
regulatory network, based on 50 TFs, and its integration with system-
wide profiling of MTB during a time-course of hypoxia and re-aeration.
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Although necessarily incomplete, the regulatory network confirms
previously known physical interactions, provides possible mechan-
isms for known regulatory interactions, provides a framework for re-
interpreting existing data, and identifies network motifs thought to
underlie dynamic behaviour. The predictive models take a first step
towards systems modelling, and integration of the network model
with profiling data provides new insight about the physiological con-
sequences of regulatory programs induced by changes in oxygen
availability—a perturbation relevant to host adaptation. The results
provide a foundation for ongoing efforts to map the complete tran-
scriptional regulatory network, and to extend it to include signalling
and non-coding RNAs46. The results presented here identify compel-
ling questions for further investigation (Supplementary Text). Studies
now focus on determining how the in vitro network connections and
physiological changes identified here relate to adaptations of the mic-
robe in the intracellular environment of the macrophage.

METHODS SUMMARY
MTB H37Rv was used for all experiments with the single exception of one experi-
ment performed in M. smegmatis (Supplementary Fig. 21). This MTB strain was
fully sequenced by the Broad Institute (GI:397671778). For Chip-Seq, cells were
cultured in Middlebrook 7H9 with ADC (Difco), 0.05% Tween80, and 50 mg ml21

hygromycin B at 37 uC with constant agitation and induced with 100 ng ml21

anhydrotetracycline (ATc) during mid-log-phase growth, and ChIP was perfor-
med using a protocol optimized for mycobacteria and related Actinomycetes. For
the hypoxia and re-aeration time-course, bacilli were cultured in bacteriostatic
oxygen-limited conditions (1% aerobic O2 tension) for seven days, followed by re-
aeration. Bacteria were cultured in Sauton’s medium without detergent or exoge-
nous lipid source. Profiling samples were collected as described in the Supplementary

Text. All data available at http://TBDB.org. Expression data also available at
GEO (accession number GSE43466).
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