Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using *Escherichia* coli

Bokinsky et al, nov 2011 PNAS

Andrew Tolonen MSSB presentation, Genoscope 7 dec 11

Why did I choose this paper?

- It's new (published 4 weeks ago)
- It relates to yesterday's talk (and my research)
- Shows many basic problems in facing synthetic biologists
- JBEI is doing cutting edge research in synthetic biology

Joint BioEnergy Institute

Consolidated bioprocessing for efficient conversion of biomass to fuel

Step 1: cellulase/hemicellulase to cut polymers into short chains

What plant feedstocks (inputs) did they use?

switchgrass: prairie grass

yard waste

eucalyptus

What feedstocks (inputs) did they use?

switchgrass: prairie grass

yard waste

Note: the biomass was pre-treated with an 'ionic liquid'

1-Ethyl-3-methylimidazolium acetate

Cost is a 'substantial barrier to commercialization' (it's expensive!)

What are environmental impacts of these liquids?

On the positive side, IL 'eliminates cellulose crystallinity'

What chemicals did they produce?

Butanol (gasoline replacement)

Pinene (jet fuel precursor)

Cellulose is a polymer of glucose

Step 1: fuse cellulase genes to OsmY domain so they are secreted

Step 2: find a cellulase that works in *E. coli*

Expressed 10 cellulases and tested supernatant for cellulase activity

Question:

How would you select genes to test? http://www.cazy.org/GH5_all.html

Step 3: find a which promoter gives highest expression of cel7

5'-AATACTTGACATATCACTGTGATTCACATATAATATGCG-3' 5'-TGTGACTGGCGCTACAATCTTCCAAAGTCACAATTCTCA-3'

"E. coli grew best on cellobiose when expressing Either *cel3A* or *cel3B*"

Step 5: find which promoter gives highest expression of cel3A

How did they make *E.coli* digest hemicellulose?

hemicellulose is a xylose polymer

Step 1: find a hemicellulase that works in *E. coli*

This was done in another study, (Xyn10B) but I think they used the same strategy as for the cellulase

How did they make *E.coli* digest hemicellulose?

Step 2: test genes to cut short xylosaccharides by screening 12 xylobiosidases from *C. japonicus*

How lucky that 1 worked! But how significant is that?

Step 3: find which promoter works best with Gly43F

clone genes onto plasmid and put them in E. coli

Question: why do you think different promoters worked best for different genes?

strains can grow on model substrates

Strains can grow on biomass (sort of)

The cellulase and hemicellulases hydrolyzed 8% of sugars in switchgrass

now add genes to make fuels (butanol)

Butanol=7 genes from *Clostridium acetobutylicum*

Atsumi et al, 2008

now add genes to make fuels (FAEE)

Steen et al, 2010

now add genes to make fuels (pinene)

Pinene=9 genes (source uknown)

Are these yields high enough to really make fuels?

butanol yield=0.028 g butanol/l of water

butanol density=0.81 g/ml

What volume of water would you need to get 11 (810g) butanol?

need 29,000 I water to get 1I butanol

What are the positives and negatives of this paper?

Positives

Made E.coli eat plants

Screen for promoters and genes that work in E. coli

Plant->fuel in single step Pure fuels Negatives

Side products?

Are other mutations needed? Transporters?

More mutations?

Make intermediates at higher conc?

Only 8% of plant degraded