Evolution of DNA sequencing technologies

Andrew Tolonen

Genoscope-CEA et l'Université d'Évry

atolonen "at" genoscope.cns.fr @andrew_tolonen http://www.tolonenlab.org

The DNA sequencing revolution: sequencing cost has fallen faster than Moore's law

Cost per megabase of DNA sequenced

Gullapalli et al, 2012 (PMID 23248761)

Moore's law describes increases in computing speed: the number of transistors in an integrated circuit doubles every 2 years.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

http://en.wikipedia.org/wiki/Moore's law

DNA structure and polymerization

DNA polymerase is an enzymes that replicates DNA in the 5' to 3' direction by forming a bond between the 5' triphosphate of the free nucleotide (dNTP) and the 3' OH of the DNA strand.

genome sizes vary among organisms

http://en.wikipedia.org/wiki/Genome_size

bacteria=a few million base pairs humans=a few billion base pairs plants=can be hundreds of billions of base pairs

Sanger sequencing (1977)

each with a

different length

Reaction mixture

Primer and DNA template DNA polymerase

ddNTPs with flourochromes + dNTPs (dATP, dCTP, dGTP, and dTTP)

Reagents

-DNA template -ssDNA primer -DNA polymerase -dNTPs (lack 2' OH) -ddNTPs, fluorescent or radioactive (lack 2' and 3' OH -> stop elongation)

Procedure

1 Anneal primer to single-stranded DNA

- 2 DNA polymerase adds dNTP 5'->3'
- 3 if polymerase adds a ddNTP, elongation stops
- 4 size separate DNA molecules on gel
- 5 visualize gel to determine DNA sequence

Template ddNTPs ddTTP -③ Capillary gel electrophoresis ddATP separation of DNA fragments ddGTP Primer elongation Capillary de and chain termination Laser detection of flourochromes
 and computational sequence analysis DNA of each length Tube contains a mix of DNA molecules. shown as chromatogram

http://en.wikipedia.org/wiki/Sanger sequencing

ABI 3730: workhorse of the human genome project

http://museum.mit.edu

The ABI 3730 does Sanger sequencing of 96 reactions in parallel using capillaries

Sanger sequencing

Two 3730 sequencers at Genoscope: reduced from 19 machines.

Advantages

-accurate and long sequences (800-1000 bp).

-good when only a few sequences are needed (i.e. confirming inserts for cloning).

Disadvantages

-low throughput (single sequences).

-expensive on a bp basis

454 Sequencing (2005) (pyrosequencing)

Procedure

- 1 fragment DNA to 400-600 bp
- 2 ligate adapters to attach to bead
- 3 attach ssDNA to micron-sized agarose beads
- 4 isolate single beads in oil droplets
- 5 amplify DNA on bead by emulsion-based PCR (emPCR)
- 6 transfer beads to pico-titer plates (1.6 million wells with 44 μm diameter Contain 75 picoliters)
- 7 454 sequencing in pico-titer plate

Emulsion PCR on individual beads

454 sequencing chemistry

Sequencing procedure

- 1 add 1 type of dNTP to well (ie dATP)
- 2 if polymerase incorporates nucleotide, PPi released.
- 3 Sulfurylase reaction produces ATP PPi + adenyl sulfate \rightarrow ATP + sulfate
- 4 Luciferase reaction produces light Luciferin + ATP \rightarrow oxyluciferin + AMP + light

5 CCD camera measures light emission in each well (light only emitted if dATP was incorporated.

454.com

454 sequencing

Three 454 sequencers at Genoscope: Machines are no longer sold in France. Reagents are available until 2016.

Advantages

-long sequences (800 bp).

-Higher throughput than Sanger: 1 million reads per run, run takes 1 day= 1Gbp per day.

Disadvantages

-Sample preparation is difficult (esp. em PCR) and takes at least 4 days.

-problems reading homopolymers (i.e A-A-A-A doesn't produce 5x light).

-'large' wells and multiple enzymes make it more expensive than other highthroughput sequencing methods

ABI SOLID sequencing (2004) (Sequencing by Oligonucleotide Ligation and Detection)

Indicates positions of interogation
 Ligation Cycle
 Ligation Cycle

Procedure

1 fragment DNA and ligate adapters.

- 2 attach single DNA molecules to agarose beads.
- 3 isolate beads in oil emulsion.
- 4 amplify DNA on beads by PCR.
- 5 covalently attach beads to glass slide.
- 6 Anneal primer, hybridize, ligate a mixture of fluorescent oligos (8-mers) whose 1st & 2nd 3' bases match template.
- 7 image fluorescence, cleave fluor.
- 8 repeat step 6 to extend sequencing.
- 9 repeat steps 6-8 with n-1 primer.

http://seqanswers.com/forums/showthread.php?t=10

SOLiD sequencing

Video of SOLiD sequencing: https://www.youtube.com/watch?v=nlvyF8bFDwM

no SOLiD sequencers Genoscope: there were 2 machines.

Advantages -Higher throughput than 454.

Disadvantages

-Sample prep (emPCR) is difficult.

-Read length limited to 35 bp.

Illumina sequencing

Video of Illumina sequencing: https://www.youtube.com/watch?v=womKfikWlxM

Reversible dye terminators are the key to this method of sequencing by synthesis

Sequence capabilities of different Illumina machines

	Read Length	Run time	Output range	Expected Reads
MiSeq	2 x 25 bp	~ 5.5 hrs	0,8 Gb	15 M
	2 x 150 bp	~ 24 hrs	5 Gb	15 M
	2 x 250 bp	~ 39 hrs	8 Gb	15 M
	2 x 300 bp	~ 65 hrs	15 Gb	25 M
HiSeq 2000 High- Output	2 x 100 bp	~ 11 days	300 Gb (x 2 FC)	1 500 M
HiSeq 2500 High- Output	2 x 125 bp	~ 6 days	500 Gb (x 2 FC)	2 000 M
HiSeq 2500 Rapid Run	2 x 100 bp	~ 27 hrs	60 Gb (x 2 FC)	300 M
	2 x 150 bp	~ 40 hrs	90 Gb (x 2 FC)	300 M
	2 x 250 bp	~ 90 hrs	150 Gb (x 2 FC)	300 M
HiSeq Xten	2 x 150 bp	< 3 days	900 Gb (x 2 FC)	3 000 M

source Karine Labadie, Genoscope

multiple samples can be sequenced in the same reaction using bar codes in the adapters

Rey et al, 2010

Illumina sequencing

Machines at Genoscope: 4 hiseq 2000, 2 hiseq 2500, 2 miseq

Advantages

-high-throughput: Hiseq has 2 flow cells, each flow cell has 8 lanes, 250 million reads per lane. 16 X 250 million reads= 4 billions reads par run. Read is 150 bp=6x10¹¹ bp per run.

-384 multiplexing of samples.

Disadvantages

-shorter sequences (now up to 300 bp on Miseq).

-reversible terminators are expensive.

-a Hiseq run takes 1 week (scanning of flow cell is slow).

lon torrent sequencing (2010) (ion semiconductor sequencing)

DNA polymerization releases PPI and H+

Procedure

1 many copies of specific DNA Template are added to microwells in semiconductor chip.

2 DNA polymerase and a single Type of dNTP (A, C, G, or T) are added to each well.

3 If dNTP is incorporated, H+ released and the pH is reduced.

4 ISFET sensor (ion sensitive Transistor) detects pH drop.

5 unincorporated dNTPs washed away before next cycle

Ion torrent sequencing

Ion Torrent sequencing: https://www.youtube.com/watch?v=WYBzbxIfuKs

No Ion Torrent sequencers at Genoscope: 1 machine at CNG

Advantages

-no modified nucleotides, special enzymes, or optics required.

-fast: sequencing occurs in real time (15 seconds per cycle, run takes 1h), which is much faster than Illumina.

Disadvantages

-reads are 100 bp with 10⁸ bp per run, which is at least 1000x less bp than Illumina.

-less accurate for homopolymers (multiple H+ released).

-requires emPCR for sample prep. Sample prep reagents are expensive.

Pacific Biosciences sequencing (2004)

https://www.youtube.com/watch?v=v8p4ph2MAvI

visualize dNTP incorporation into a single molecule by DNA polymerase

Phospholinked nucleotides: Each type of nucleotide has a different fluorophore that is released when incorporated into DNA chain.

Zero-mode wave guide: nano-structures allow individual molecules to be isolated

allow individual molecules to be isolated for optical analysis

Procedure

1 insert single template DNA molecule and DNA polymerase into 'well' of zero-mode wave guide

2 add mix of phospholinked dNTPs

3 DNA polymerase incorporates a dNTP, fluorescence observed.

http://opfocus.or g

Pacific Biosciences sequencing

No PacBio machines at Genoscope or elsewhere in France.

Advantages

-single molecule sequencing (no PCR bias).

-rapid sequencing can be used for disease outbreaks (cholera in Haiti 2010).

-long reads: avg 5,000 bp, up to 30 kb. Disadvantages -high error rate (13%).

-low throughput: 60,000 reads per run = $3x10^8$ bp in 3h.

-requires 1 ug DNA for sample, so often need to amplify anyways.

-Polymerase is photo-degraded. Need more stable polymerase.

Source http://nextgenseek.com/2013/04/pacbio-launches-pacbio-rs-ii-sequencer/

Nanopore sequencing (2014) (strand sequencing)

DNA sequenced as it passes through a nanopore

Procedure

1 embed protein nanopore in resistant membrane.

2 put nanopore in conducting fluid.

3 apply voltage.

4 electrical current due to ion conduction through pore.

5 passage of DNA through pore changes current.

6 current change through pore as DNA passes is sequence readout.

DNA sequenceread in in 5 bp intervals. Each 5 bp gives a different signal (1000 possibilites).

Oxford Nanopore MinION USB key sequencer

Nanopore sequencing

Video of Oxford Nanopore sequencing: https://www.youtube.com/watch?v=3UHw22hBpAk

6 Oxford Nanopore sequencers at Genoscope

Advantages

-inexpensive: no PCR, modified nucleotides, special enzymes, or optics required.

-fast: DNA passes through pore at 20-100 bp per second.

-very long reads are possible (8-9 kb per read).

-possible to sequence other polymers (proteins).

Disadvantages -low throughput: 512 pores per flow cell.

-<80% of pores are active. Pores can get blocked. Forward run is better than reverse.

-DNA gets stuck and does not pass through pore at constant rate.

Illumina is currently 80% of the DNA sequencing market. What could change that?

-lon Torrent: eliminate emPCR? Increase chip density (more ads per run)?

-PacBio: reduce sample prep to enable real-time sequencing?

-Oxford Nanopore: Control passage of DNA through pore? Increase pores per chip?

BIOSCIENCES'