Perl Programming Fundamentals for the
Computational Biologist

Class 1

Marine Biological Laboratory
“Advances in Genome Technology and
Bioinformatics”

Fall 2004

Andrew Tolonen
Chisholm Lab, MIT

Acknowledgements:

Penny Chisholm, MIT
Simon Kasif, Boston Univ.
George Church, Harvard Med. School
Art Newhall, WHOI
Lance Davidow, Mass. Gen. Hospital

Goals of the course:

- Introduce Perl (syntax, structure)

- Share some useful scripts to use as
templates for your own projects

- Empower you as hackers

- your computer is a lab tool to test hypotheses (just
like the PCR machine)

- the open source developers community is an
incredibly powerful resource — even more powerful
than the Microsoft tech support line!

- Perl news groups:
- comp.lang.perl.moderated
- alt.perl

- CPAN (Comprehensive Perl Archive Network):
WWW.cpan.org

- My email: tolonen@mit.edu

Outline of the Course

Class 1: Intro to Perl
Data types: scalars, arrays, hashes
Control structures: if...else, while, for, foreach
Filehandles (I/O)
Intro to Pattern Matching

Class 2: Regular expressions
Subroutines
Modules
Examples of common problems in
bioinformatics

What is Perl?

“Perl is the duct tape of the internet”
- Randal Schwartz (author of Learning

Perl)
“TMTOWTDI.”
~ Wall, Christiansen and Orwant, Programming
Perl

“Perl is the CIiff Notes of Unix”.
- Larry Wall

“Perl is optimized for problems which are about 90%
working with text and about 10% everything else.”
- (Schwartx and Phoenix, Learning Perl)

“The very definition of hell is having to maintain
someone else's Perl code.”
- Anonymous

$happiness =~ s/Perl/Java/g;
- adapted from Jamie Zawinski

Does my computer have Perl?

Determine what version of Perl is installed

% perl -v

This is perl, v5.8.4 built for sparc-linux-thread-
multi

Locating the Perl executable

% whereis perl
perl: /usr/bin/perl

HEHRHHHHBH AR AR R AR

If not, how do | get Perl?
Download it from www.cpan.org, It's free!

How do | run a Perl script?

Running a Perl script from a file:

% emacs myScript.plx
#!/usr/bin/perl

print “Hello world!\n”; # that's it!

% chmod +x ./myScript.plx
make the perl script executable

$./myScript.plx

Running a Perl script from the command line:
% perl -e 'print “Hello world!\n"';

Perl Variables

- A variable is just a box to hold your data
- Perl just has three data structures (types of boxes to
hold your data)

_ scalars (variables denoted with $, i.e.

$name)

- arrays (variables denoted with @, i.e.
@names)

- hashes (variables denoted with %, i.e.
%names)

HHHRHHHHBH AR AR R AR

$Scalars

$name » Andy

Examples of scalar variables are strings and numbers

Sorganism = “Escherichia coli K12";
SgenomeSize = 4639675;

use double-quotes to allow control chars (\n, \t) and

variables within the quotes. use single-gquotes to get
string literals.

Scalar operators:

Comparing scalars
- compare numbers (==, <,<=) but don't use the
single equals (=), that's for assignment!
- comparing strings (eq, ne, etc.)

Concatenating two scalars: you can concatenate two

scalars using a dot (.).
Sstringl = “Felicit”;
Sstring2 = “ations”;
$string3 = $stringl.$string;

chomp() removes newlines from the end of a scalar
variable

chomp ($Sname) ;

substr() takes a scalar, a start position, and a length

and extracts a substring. substr($string, offset,

length).

Ssequence = tgcattgtttactaca;

Ssubseq = substr($sequence, 0, 4); # grab the first
four bases in the sequence

Ssubseqg2 = substr($sequence, 4, 8); # grab bases 5
through 12

An example script using scalar variables:

#!/usr/bin/perl
Sradius = 5;
Spi = 3.1415;

Scircumference = 2 * $pi * Sradius;

print “the circumference of the circle is
Scircumference\n”;

HAHHH R R R

@Arrays

An array is a list of scalar data indexed with numbers.
The first element of an array has an index = 0.

names > Sam

creating an array:
@names = (“John”, “Jane”, *“Sam”);

accessing an element in the array
SsecondName = Snames[1l];

assigning a new element to an array
Snames[3] = “Harry”;

printing an array

print “@names”;

Array operators

unshift pop

]
J T

shift push

use unshift() to add an element to the front of an array
unshift(@names, “Andy”);

use shift() to remove an element from the front of an

array
$name = shift(@names);

use push() to add an element to the end of an array
push(@names, *“Greg”);

use pop() to remove an element from the end of an

array
Sname = pop(Qarray);

use reverse() to reverse the positions of the elements

In an array
@reverseNames = reverse(@names);

use split() to break up a scalar into an array based on

a pattern
Ssentence = “Hi my name is Andy”;
@words = split(” *“, $sentence);

use sort() to sort the elements of an array in

ascending ascii order (like a dictionary)
@sortedNames = sort(@names);

Note: you need different syntax to sort an array of

numbers (i.e so 12 doesn't come before 6!)
@sortedNums= sort({$a<=>$b} @numbers);

HHHHHHHHRH AR AR R R R AR A

%Hashes

- Like arrays, a hash is a collection of scalars. But
hashes use strings as indices instead of numbers.
The indices are called keys. Keys point to values

key => value

- Hashes are like barrels of data where each piece of

data has a tag attached.

- The elements are in no particular order.

- The keys must be unique. Values can be
duplicated.

%eyeColor

John ™ Dblue
Jane > brown

Sam * Dblue
Wendy > green

Create a hash
%genes = (“ntcA” => “transcription factor”, “pstS”
=> “phosphate stress sensor”, “rnpB” => “RNAse P");

Access an element in a hash
SgeneName = “ntcA”;
Sfunction = $genes{$geneName};

Add an element to a hash
SgeneName = “rpoC”;
Sgenes{$SgeneName} = “RNA polymerase subunit”;

Printing a hash
foreach $key (keys(%genes))

{
print “S$key $genes{$Skey}\n”;

}

Hash operators

keys(): returns an array of all the keys of the hash. se
e above.

delete: remove a key-value pair from a hash

R
Control Structures

Control structures are how to impose logic on your
programs

“If” loops: execute once if an expression is true

if (SbeerLabel eq “Harpoon”)
{

print “Sure. I'd love to come over for a
beer.\n";

}

else

{
print “Oh. Sorry, I really need to do laundry.\n”;

}

“While” loops: repeatedly execute so long as an
expression is true

Sbottles = 99;

while (Sbottles >= 0)

{
print “there are $bottles bottles of beer on the

wall\n”;
Sbottles = S$bottles -1;

}

“For” loops: execute repeatedly so long as a test is
true. for loops have the following syntax:

for (Sbottles = 99; S$bottles >= 0; S$bottles--)

{
print “there are $bottles bottles of beer on the

wall\n”;

}

“Foreach” loops: execute as many times as there are
elements in @somelList

foreach S$Selement (Q@array)

{

print “$element\n”;

}

HUHRHAHHAH B AR AR H AR R AR AR AR R AR

Filehandles: Basic I/O (Input/Output)

- A filehandle is the name for an 1/0O connection

between your Perl script and the outside world

- By convention, name your filehandles in uppercase

- There are 6 special filehandles in Perl. The most
commonly used one STDIN, the filehandle that

connects your Perl script to the keyboard.

Prompt the user for input to your perl script:

#!/usr/bin/perl

print “What is your name?: *“;
Sname = <STDIN>;

chomp ($name) ;

print “Your name is $name\n”;

Filehandle operators:
open() will open a filehandle.

open a file for input to your script
open(IN, “<./input.txt”);

open a file for output from your script
open(OUT, “>./output.txt”);

open a file for output, appending to the existing file
open(OUT, “>>./output.txt”);

close() will close a filehandle. If you forget to close a
filehandle, Perl will do it automatically at the end of
your script.

close(IN);

die will abort program with a fatal error if the filehandle

cannot be opened.

open(IN, “<./input.txt”) or die “can't open input
file\n”;

Here is how you could open a file and read it into a
variable called $file in your script.

#!/usr/bin/perl

open(IN, “<./Ecoli.faa”) or die “can't open input
file\n”;

while ($line = <IN>);

{
Sfile = “S$file”.”S$line”;

}
FHF AR F R A AR A AR A FARARAARARARAARARARRERRHS

Intro To Pattern Matching

One of Perl's greatest strengths is its ability to search
for patterns in large files. It does this using regular
expressions. Today we will introduce pattern
matching.

The standard way to specify a pattern is to enclose it
in forward slashes //. Variables are compared to a
pattern using the binding operator =~.

if ($string =~ /pattern/)
{

do something;

}

In addition to just matching a pattern, you can make a
substitution in a variable using a pattern.

$string =~ s/John/Jane/;

Here is an example:
#!/usr/bin/perl

Sprotein="MPSLATLLIYLMAGTALGLLTLRTGIPAAPLAGA
LLGAGLVSMTGRLDVAEWPSGTRTAIEIAIGTVIGTGLTKSSLG
ELONLWKPALLITLTLVLTGIVIGLWSSRLLGIDPVVSLLGAAP
GGISGMSLVGAEFGVGAAVATLHAVRLITVLLVLPLLVKLLAP";

Sprotein =~ s/\n//g; # remove all the newlines
$protein =~ s/\s//g; # remove white space
Smotif = “GGISG”; # define the motif you are

looking for

if ($protein =~ /$Smotif/)

{

print “Yeah. This protein contains the motif
Smotif\n”;

}

