Perl Programming Fundamentals for the Computational Biologist

Lab 1

Marine Biological Laboratory, Woods Hole "Advances in Genome Technology and Bioinformatics" Fall 2004

> Andrew Tolonen Chisholm Lab, MIT

Goals of lab 1: Let's say you are a computational biologist studying bacterial pathogenesis. You just returned from a seminar where the speaker described a novel amino acid motif found in genes involved infection. Your goal is to use Perl to search all the genes in your genome for this motif.

Prelab: download the genome file and the example solutions from a remove server

- 1. Open your browser
- 2. Type "ftp://PerlClass@cyano.mit.edu" into the browser window password: perlmbl
- 3. Retrieve the archive by "save target as" for Lab1.tar.gz
- 4. Unzip the archive
- % gunzip Lab1.tar.qz
- 5. Untar the archive
- % tar -xvf Lab1.tar

Exercise 1: Running a Perl script "helloWorld.plx"

open a file using a text editor (emacs, vi):

% emacs helloWorld.plx

write your script:

#!/usr/bin/perl

```
print "$message";
close the file: emacs (Cntrl-X, Cntrl-S, Cntrl-X, Cntrl-C) or vi (Shift-
ZZ)
make the script executable:
% chmod +x helloWorld.plx
run the script:
% ./helloWorld.plx
Exercise 2: Opening a Filehandle and reading a file
into your program "openFile.plx"
1. Create a script to open a filehandle to the file "genes.faa",
filehandle syntax:
open(FILE, "<./myfile.txt") or die "cant open
file\n";
2. Read each line of the file into a scalar variable,
while ($line = <FILE>)
 $file = $file.$line; # concatenate lines of the
                         # file into a variable
}
Print out the entire file to the screen.
```

Exercise 3: Feeding a file into a hash "makeHash.plx"

Ok. This is tough part. The goal here is to read the file and feed it into a hash (key = gene name; value = gene sequence). As before, open the file and read each line. But this time you have to examine each line as the script reads it and either make a new key (line contains a gene name), or append the line to the gene sequence.

```
while ($line = <IN>)
{
  if ("line contains a gene name. use a pattern
match here i.e. /gene/ or /^>/")
  {
      "make a new hash key. $key = $line;"
  }
  else
  {
      "concatenate line to genes sequence"
      $hash{$key} = $hash{$key}.$line;
  }
}
```

Here is a related example:

<u>Problem</u>: I have a file containing fly gene names and worm gene names.

CG6023

CG2012

F023.4

CG2323

I know that fly genes begin with "CG" and worm genes begin with "F". I want to do two things: 1. separate worm and fly genes. 2. determine which genes occurred in the file more than once:

<u>Solution</u>: Open the file and read each line into a hash. If the gene name is new, create a key. If the gene name has occurred before, increment the value of the hash:

```
#!/usr/bin/perl
```

```
# count the number of duplicated gene entries in a
         Fly gene names begin with "CG" and worm
# file.
# genes begin with "F"
open (IN, "<./genes.txt") or die "cant open input
file\n";
while ($line = <IN>)
 chomp $line;
 if ($line = ~/^CG/)
   $fly{$line}++;
 if ($line = ~/^F/)
 {
   $worm{$line}++;
 }
}
# print out the two hashes
foreach $k (keys(%fly))
{
print "$k\$fly{$k}";
}
foreach $1 (keys(%worm))
print "$1\n$worm{$1}\n";
close IN;
close OUT;
```

Exercise 4: Searching the values of a hash for a motif "searchHash.plx"

You've done the toughest part. Now you just want to search each sequence for your motif. You have a hash (key = gene name; value = gene sequence). Now just search each of the values in the hash for a motif.

```
$motif = "SG"; # motif is a serine followed by a
glycine

foreach $key (keys(%hash))
{
   if ($hash{$key} =~ /$motif/)
    {
      print "$key\n";
   }
}
```