Perl Programming Fundamentals for the
Computational Biologist

Lab 1

Marine Biological Laboratory, Woods Hole
“Advances in Genome Technology and
Bioinformatics”

Fall 2004

Andrew Tolonen
Chisholm Lab, MIT

Goals of lab 1: Let's say you are a computational biologist studying
bacterial pathogenesis. You just returned from a seminar where the
speaker described a novel amino acid motif found in genes involved
infection. Your goal is to use Perl to search all the genes in your
genome for this motif.

Prelab: download the genome file and the example
solutions from a remove server

1. Open your browser

2. Type “ftp://PerIClass@cyano.mit.edu” into the browser window
password: perimbl

3. Retrieve the archive by “save target as” for Labl.tar.gz

Unzip the archive
gunzip Labl.tar.gz

oo N

Untar the archive
tar -xvf Labl.tar

oe U1

H R R R A R T T R A R R R R i

Exercise 1: Running a Perl script “helloWorld.pIx”

open a file using a text editor (emacs, vi):

[o)

% emacs helloWorld.plx
write your script:

#!/usr/bin/perl

Smessage = "Hello world!\n"; #create a scalar to
#contain your message

print "Smessage";

close the file: emacs (Cntrl-X, Cntrl-S, Cntrl-X, Cntrl-C) or vi (Shift-
Z7)

make the script executable:
% chmod +x helloWorld.plx

run the script:
% ./helloWorld.plx

HHE R R R R R R R R

Exercise 2: Opening a Filehandle and reading a file
into your program “openkFile.plx”

1. Create a script to open a filehandle to the file “genes.faa”,
filehandle syntax:

open(FILE, “<./myfile.txt”) or die “cant open
file\n”;

2. Read each line of the file into a scalar variable,
while ($line = <FILE>)

{

Sfile = $file.$line; # concatenate lines of the
file into a variable

}

3. Print out the entire file to the screen.

HEHHRHH R AR R R R A AR R R

Exercise 3: Feeding a file into a hash “makeHash.plx”

Ok. This is tough part. The goal here is to read the file and feed it
into a hash (key = gene name; value = gene sequence).

As before, open the file and read each line. But this time you have to
examine each line as the script reads it and either make a new key
(line contains a gene name), or append the line to the gene
sequence.

while ($line = <IN>)

{

if (“line contains a gene name. use a pattern
match here i.e. /gene/ or /">/")

{
“make a new hash key. S$key = $line;”
}
else
{
“concatenate line to genes sequence”
Shash{Skey} = Shash{Skey}.S$line;
}
}

Here is a related example:

Problem: | have a file containing fly gene names and worm gene
names.

CG6023

CG2012

F023.4

CG2323

| know that fly genes begin with “CG” and worm genes begin with “F”.
| want to do two things: 1. separate worm and fly genes. 2.
determine which genes occurred in the file more than once:

Solution: Open the file and read each line into a hash. If the gene
name is new, create a key. If the gene name has occurred before,
increment the value of the hash:

#!/usr/bin/perl

count the number of duplicated gene entries in a
file. Fly gene names begin with “CG” and worm
genes begin with “F”

open (IN, "<./genes.txt") or die "cant open input
file\n";

while ($line = <IN>)

{
chomp $line;
if ($line =~ /"CG/)
{
Sfly{Sline}++;
}
if ($line =~ /"F/)
{
Sworm{$line}++;
}
}

print out the two hashes

foreach $k (keys(%fly))

{
print "S$k\$fly{$k}";

}

foreach $1 (keys(%$worm))

{
print "$1\n$worm{$1l}\n";

}

close IN;
close OUT;

TR TR T T T T T T T TR TR T R TR TR T

Exercise 4: Searching the values of a hash for a motif
“searchHash.plIx”

You've done the toughest part. Now you just want to search each
sequence for your motif. You have a hash (key = gene name; value
= gene sequence). Now just search each of the values in the hash
for a motif.

Smotif = “SG”; # motif is a serine followed by a
glycine

foreach $key (keys(%hash))

{
if (Shash{$key} =~ /$motif/)
{
print “S$key\n”;
}

}

